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Abstract
We study the electron–phonon scattering rate 1/τep in impure metals in the
dirty limit. We show that, if all impurities are substitutional, the previous
Reizer–Sergeyev result, 1/τep ∼ T 4, holds even when discreteness of the lattice
structure is taken into account, where T = temperature. However, the result
is modified when we also allow for random positional shift of impurities, in
which case the result 1/τep ∼ T 2, is obtained.

1. Introduction

Electron–phonon (e–ph) interaction in clean metals is well understood. However, for dirty
systems, it is still a subject of investigation. The primary issue of concern is whether the
presence of disorder weakens or enhances the e–ph interaction in the so-called dirty limit,
i.e. qT l � 1, where qT = kBT/h̄cs , with l = electron mean free path, T = temperature
and cs = the velocity of sound. This limit occurs when the temperature is sufficiently low
or when the disorder is strong enough, and theoretical calculations performed by Schmid and
co-workers [1,2] and later by Reizer and Sergeyev [3] (referred to as RS in below) in the limit
obtain the e–ph scattering rate 1/τep ∝ T 4. This rate is a reduction compared with the result
for clean systems (characterized by the condition qT l � 1), where 1/τ (0)

ep ∝ T 3 [4]. On the
other hand, in the dirty limit, various T -dependences of the rate have been observed, including
that of the theoretical prediction, 1/τep ∝ T 4 [5]. But it is widely reported to have observed the
deviating behaviour, 1/τep ∝ T 2, which is an enhancement over the clean-limit result [6, 7].
The deviation from the theoretical prediction presents an interesting question and has been a
subject of long-term study.

Since Schmid et al and RS obtain the same T 4-dependence with different theoretical
approaches, the consensus among the theorists has been that the T 4-dependence is somewhat
firmly established and, to explain the observed T 2-dependence, attention should turn to model
assumptions. For example, Beltz et al [8] have introduced strong phonon damping, and
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demonstrated that it can modify 1/τep and lead to agreement with experiment. Sergeev et al [9]
have invoked static random potentials which do not move with lattice vibrations, and obtained
an enhanced 1/τep, too.

In this paper, we shall address the role played by the ‘geometric symmetry’4 of impure
systems in the issue of e–ph scattering rate. We shall show that, if the geometric translational
symmetry of a metal is preserved in the presence of impurities, the e–ph scattering rate has
the T 4-dependence. On the other hand, if the impurity destroys the symmetry, it results in the
enhanced T 2-dependence.

2. Theoretical model

Since our calculation below is based on an extension of the RS treatment of e–ph scattering, our
presentation shall avoid repeating details which can be found in RS. Let us firstly summarize
their work. It contains an extensive analysis of Feynman diagrams, and it shows, for the
calculation of the e–ph scattering rate, that there are two important classes of diagrams
designated as A and B, respectively. Class A makes to 1/τep the contribution which is of
the order of T 4, while class B contains basically two types of diagrams, each consisting of
a leading-order T 2-term and a next-order T 4-term. RS show that the T 2-terms from the two
types of diagrams in class B cancel exactly with each other but the higher-order T 4-terms do
not. Upon summing classes A and B, therefore, it is the T 4-dependence that finally dominates
the scattering rate.

A fact worth noticing is that, concerning the cancellation of T 2-terms as well as the non-
cancellation of T 4-terms, there is a familiar parallel in the modelling of optical properties
of a system. There, recall that, if inversion symmetry is present in the system, electric
dipole transitions are zero between states of the same parity, while higher-order transitions,
for example, magnetic dipole or electric quadrupole ones, can still be finite between them.
Therefore, it may not be unreasonable to conjecture a similar symmetry-related reason for the
fact noted above of the simultaneous occurrences of T 2-cancellation and T 4-non-cancellation.
In other words, some specific symmetry may have been present in the RS model and results
in a weakened scattering rate with theT 4-dependence. If the symmetry is removed, one may
obtain the much stronger T 2-dependence.

We are thereby motivated to examine the geometric symmetry incorporated in the RS
model. In particular, we shall focus on if there are any ‘symmetry-introducing’ approximations
in the RS model. One candidate is the approximation of replacing the discrete lattice structure
of a metal by a continuum. The approximation is not worded explicitly in their work but
is implied by the fact that they use, in place of crystal waves containing cell-periodic Bloch
functions, plane waves as unperturbed electronic eigenstates. This is a popular approximation
in solid-state theory and generally valid. However, this approximation needs attention when
impurities are present. Let us now consider a discrete lattice. When the lattice is doped with one
impurity, two consequences can result depending on the location of the impurity. If the impurity
substitutes for a host atom, then the translational symmetry of lattice is preserved (assuming
we disregard the difference between the atomic potentials of an impurity and a host atom);
whereas, if it precipitates to an interstitial place, the symmetry is broken. In contrast, within
the continuum approximation of a lattice, it always results in the same situation irrespective of
the impurity site, i.e. the translational symmetry is always preserved. In particular, in the case
of a metal doped with non-substitutional impurities, the foregoing discussion implies that the

4 We define a geometric symmetry to be a symmetry present in the system when impurities and host atoms are both
regarded as simple geometric objects undistinguishable from one another. This is somewhat different from the usual
notion of symmetry in physics.
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continuum approximation would over-impose translational symmetry on the metal where, as
a matter of fact, such a symmetry should be absent.

Apart from the above concern about a possible interplay between the symmetry and
scattering rate, another reason why, in the present context, it is worthwhile considering the
discrete nature of a metal is the following. The e–ph scattering is a wave phenomenon, and
it depends on the interference between various scattering paths. To accurately account for
the interference, especially that between scatterings of an electron off moving impurities and
those off moving host atoms, one must consider the exact positions of impurities relative to
the host lattice. Thereby, it suggests that one should take into account the discrete nature of a
lattice.

In what follows, we shall provide evidence for our conjecture of a relation existing between
the translational symmetry and the e–ph scattering rate. In particular, we shall carry out two
calculations, all in the limit of dilute impurity concentration. Firstly, we shall show that,
when one considers a discrete lattice with only substitutional impurities (in which case the
translational symmetry is preserved) the cancellation of T 2-terms shown in the RS calculation
still holds and, so, the scattering rate still scales as T 4. Secondly, we shall show that,
when one considers a discrete lattice with non-substitutional impurities (in which case the
translational symmetry is destroyed), the T 2-terms do not cancel, leading to a T 2-behaviour
of the rate.

2.1. A discrete lattice with only substitutional impurities

To facilitate the calculation, the lattice is taken to have inversion symmetry. (We shall
constantly assume so for a clean lattice throughout this work, valid for most metals.) We carry
out a calculation where both impurity and interaction effects on electrons are treated within
perturbation theory. We write the total perturbation as Hint = He–e + He–i + He–ph + He–mi,
where He–e is the e–e interaction, He–i the electron–impurity (e–i) interaction, He–ph the
e–ph interaction, and He–mi the electron–moving impurity (e–mi) interaction. In the work
of RS, unperturbed electron states are approximated with plane waves, and the perturbation
is evaluated within the usual impurity-diagrammatic technique [10]. The present calculation
differs from latter mainly in that we take into account the discrete lattice structure and use,
in place of plane waves, the crystal wave function ψp = |p〉 = exp(ip · r)up(r), where up

is the cell-periodic Bloch function. We discuss how it modifies, for example, the RS e–i and
e–mi vertices. For scattering of an electron off the impurity at lattice site Ri , we obtain the
following scattering matrix element (assuming the system volume is unity):

〈p+k|Vimp(r − Ri)|p〉 =
∑

G

Vimp(k − G)C(G;p + k, p) exp[−i(k − G) · Ri]

where G is a reciprocal lattice vector and C(G;p + k, p) ≡ ∫
exp(−iG · r)u∗

p+kup dr . In
contrast, in the RS calculation, C(G;p + k, p) = δG,0, and the element is 〈p + k|Vimp(r −
Ri)|p〉 = Vimp(k) exp(−ik · Ri). To adapt the diagrammatic technique to the present
calculation, we replace the RS e–i vertex, Vimp(k) exp(−ik · Ri), with ours. To modify the
e–mi vertex, we write (with h̄ = 1)

He–mi =
∑
p,σ

∑
k �=0

∑
q �=0,λ

∑
G

C(G;p, p − k) γ (k − G, q, λ)c+
p,σ cp−k,σ (bq,λ + b+

−q,λ)

×
∑
Ri

exp[−i(k − G − q)Ri]

where γ (k−G, q, λ) = −iVimp(k−G) (k−G) ·eqλ/(2MNωqλ)
1/2. In the above, c and c+ are

electron operators, b and b+ phonon operators, eqλ a unit vector along the phonon polarization,
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Figure 1. (a) The diagram of an e–mi interaction vertex. (b)
The self-energy diagram due to the e–i interaction. Solid line—
electron line, wavy line—phonon line, dashed line—impurity
line, ‘x’—impurity.

λ the phonon branch index, M = mass of a unit cell, N = number density of unit cells,
and ωqλ = phonon energy. In figure 1 (a), we show the diagram for an e–mi interaction
vertex. The vertex is proportional to5 i(k − G) · eqλVimp(k − G)/ε(k − G,ω). Here, we have
included the dynamic screening of the e–mi vertex by the e–e interaction, with ε(k − G,ω)

the dielectric function. For comparison, the corresponding RS vertex is proportional to
i k · eqλVimp(k)/ε(k, ω).

We now examine how the RS result of scattering rates is modified. Let us firstly calculate
the impurity scattering rate, which is the imaginary part of the self-energy6 in figure 1 (b). We
note a few facts which shall be used in the calculation. Firstly, there are two useful identities
involving C: ∑

G

C(G;p + k, p) = ψ∗
p+k(r = 0) ψp(r = 0) (1)

∑
G

C(G;p + k, p)(k − G) = i × ∇[ψ∗
p+k(r)ψp(r)]r=0 (2)

C(G;p + k, p) = real (3)

ψ∗
p(r) = ψ−p(r) and |ψp(r)| = |ψp(−r)|. (4)

Equations (1) and (2) follow from the definition of C(G;p + k, p), (3) from inversion
symmetry7, and (4) from time reversal and inversion symmetries of the system, respectively. In
accordance with RS, we take, for simplification, the impurity potential screened by conduction

5 We have adopted the convention where a momentum is associated with an impurity line. Let the impurity momentum
be k −G, we then associate i(k −G) · eqλVimp(k −G)/ε(k −G,ω) with the e–mi vertex, and weigh each vertex with
the factor C(G;p, p− k), where p− k = incoming electron momentum and p = outgoing electron momentum, and
sum the result over G.
6 Similar to the case of e–mi vertex, the e–i vertices are to be weighted by C(G;p + k, p) and C∗(G′;p + k, p) and
summed over G and G′.
7 We write up(r) =∑

G d(G;p) exp(iG · r), and note that d(G;p) satisfies the Hamiltonian matrix equation

[h̄2(p + G)2/2m − ξp] d(G;p) +
∑
G′

V (G − G′) d(G′;p) = 0

whereV (G−G′) is the Fourier transform ofV (r), the crystal potential. Using the propertyV (r) = V (−r), V (G−G′)
is real. Therefore, the solution d(G;p) to the Hamiltonian equation can be chosen to be real. Using such up and up+k
to evaluate C(G;p + k, p) ≡ ∫

exp(−iG · r)u∗
p+kup dr , one sees that C(G;p + k, p) is real.
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pp p+k
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Figure 2. The diagram for I7.

electrons to be a δ-function with strength V0 and obtain the impurity scattering rate of the state
|p〉 at the Fermi level
1

τp
= 2π

∑
k

Nimp|V0|2δ(ξp+k − ξp)
∑
G,G′

C(G;p + k, p)C∗(G′;p + k, p)

= 2π |ψp(r = 0)|2
∑
k

Nimp|V0|2δ(ξp+k − ξp)|ψp+k(r = 0)|2

= 1

τ0
|ψp(r = 0)|2

∫
d&p+k

4π
|ψp+k(r = 0)|2 (5)

where Nimp = impurity density, ξp = electronic energy, and 1
τ0

≡ πν Nimp |V0|2 with
ν = electronic density of states at the Fermi level. The second line of equation (5) is obtained
from the first line withC andC∗ replaced according to equations (1)–(4). We note, incidentally,
that 1/τ0 is the impurity scattering rate in the RS calculation. Therefore, equation (5) shows
how the RS result of impurity scattering is modified when discreteness of the lattice structure
is taken into account.

Next, we calculate the e–ph scattering rate. We shall consider mainly the dominant
diagrams (of class B) in figures 2 and 3, each of which involves the e–mi interaction and
gives rise to an integral (designated by RS as I7 and I8, respectively) making an order of T 2

contribution to the rate. Other diagrams, i.e. those of class A, have been shown by RS to
result in an integral, designated as IA, which is of the order of T 4. With the integrals, the
rate is determined as 1

τep(ξ)
= − δ(I7+I8+IA)

δnξ
, where nξ is the Fermi–Dirac distribution function

at energy ξ . For the diagram in figure 2, we have the integral

I7 = i

πν

Nimp|V0|2
2MN

∫
d3p d3(p + k) d3q dω

(2π)10

J7R(ξ, ω)

ωq,λ

[GA(p, ξ) − GR(p, ξ)]

×[GA(p + k, ξ + ω) − GR(p + k, ξ + ω)] [DR(q, ω) − DA(q, ω)] (I.1)

where

J7 =
∑
G1,G2

C(G1;p + k, p)C∗(G2;p + k, p) [eqλ · (k − G1)] [eqλ · (k − G2)]

= |eqλ · ∇[ψ∗
p+k(r) ψp(r)]r=0|2. (I.2)

The second line of (I.2) is obtained with the help of equations (1)–(4). For comparison, we
also list the corresponding J7 of RS here

JRS
7 = (eqλ · k)2.

In I7, the expression R is given as

R(ξ, ω) = Nωnξ (1 − nξ+ω) − (1 + Nω)(1 − nξ )nξ+ω
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q

pp

k2-G4+qk2-G3

k1-G2k1-G1+q

p+k2 p+k2+qp+k1+k2+q

q

pp p+k2

k2-G4+qk2-G3

p+ k1+k2

k1-G2 k1-G1-q

p+k2+q

Figure 3. The diagram for I8. Each diagram here actually has a symmetric counterpart not shown
in the figure.

withNω the Bose–Einstein distribution. GR andGA are retarded and advanced Green functions,
respectively, with

GR(p, ξ) = [GA(p, ξ)]∗ = (ξ − ξp + i/2τp)
−1.

DR and DA are retarded and advanced phonon propagators, respectively, with

DR(q, ω) = [DA(q, ω)]∗ = (ω − ωqλ + i0)−1 − (ω + ωqλ + i0)−1.

Using the properties, equations (1)–(4), we obtain

I7 = −πνNimp|V0|2
MN

∫
d3q

(2π)3

R(ξ, ωqλ)

ωqλ

∫
d&p

4π
|ψp(r = 0)|2

×
∫

d&p′′

4π

∣∣eqλ · [∇ψp′′(r)]r=0

∣∣2
. (6)

Next, we calculate the contribution from the diagrams in figure 3. Each diagram here actually
has a symmetric counterpart not explicitly shown in the figure. With all these diagrams, we
have the integral

I8 = i

πν

N2
imp|V0|4
2MN

∫
d3p d3(p + k1 + k2) d3(p + k2) d3q dω

(2π)13

J8R(ξ, ω)

ωqλ

×[GA(p, ξ) − GR(p, ξ)]
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×[GA(p + k1 + k2, ξ + ω) − GR(p + k1 + k2 + q, ξ)]

×[GR(p + k2, ξ)G
A(p + k2 + q, ξ + ω) + c.c.]

[DR(q, ω) − DA(q, ω)] (I.3)

where

J8 =
∑

G1G2G3G4

C(G1;p + k1 + k2, p + k2)C
∗(G2;p + k1 + k2, p + k2 )C(G3;p + k2, p )

×C∗(G4;p + k2, p ) [(k2 − G4) · eqλ][(k1 − G2) · eqλ]. (I.4)

For comparison, in the RS calculation,

JRS
8 = (k2 · eqλ)(k1 · eqλ).

To proceed, we note that the major contribution to the integral I8 comes, when integrated
with respect to q, from q ∼ qT , the thermal phonon wavevector. Since qT is small at low
temperatures, we can regard the phonon wavevector q as also being small, and Taylor-expand
the integrand of I8 around q = 0. We retain only the leading-order term, which, because
q ∼ qT = kBT/h̄cs , corresponds to the dominant T -dependence. With the approximation, we
obtain

J8 ≈ −|ψp(r = 0)|2|ψp+k1+k2(r = 0)|2|ψp+k2(r = 0)|2|eqλ · [∇ψp+k2(r)]r=0|2
and

I8 ≈ πνNimp|V0|2
MN

∫
d3q

(2π)3

R(ξ, ωqλ)

ωqλ

∫
d&p

4π
|ψp(r = 0)|2

∫
d&p′

4π
|ψp′(r = 0)|2

×
∫

d&p′′

4π

τp′′

τ0
|ψp′′(r = 0)|2|eqλ · [∇ψp′′(r)]r=0|2 (7)

correct to the order of q2
T . The next-order term corresponds to the order8 of q4

T (or T 4). Now,
we sum integrals I7 and I8, and obtain

I7 + I8 ≈ πνNimp|V0|2
MN

∫
d3q

(2π)3

R(ξ, ωqλ)

ωqλ

∫
d&p

4π
|ψp(r = 0)|2

×
∫

d&p′′

4π

{
|eqλ · [∇ψp′′(r)]r=0|2

×
[

− 1 + |ψp′′(r = 0)|2 τp′′

τ0

∫
d&p′

4π
|ψp′(r = 0)|2

] }
= 0 + o(T 4)

where equation (5) has been used to obtain the last line. It then follows that 1
τep(ξ)

=
− δ(I7+I8+IA)

δnξ
= o(T 4). In summary, in the present case where a discrete lattice with

substitutional impurities is considered, the e–ph scattering rates varies as T 4.

2.2. A discrete lattice with non-substitutional impurities

In a previous paper by Jan, Wu and Wei (referred to as JWW in what follows) we studied the
particular case of polycrystalline systems with grain boundary defects, where aT 2-behaviour of
the e–ph scattering rate is derived [11]. In this work, we shall consider impurities with positional
shift. Although such a case is perhaps not easy to realize in experiments, the purpose here
is to demonstrate, from a theoretical point of view, that destruction of translational symmetry
can enhance the scattering rate. We study two cases, in particular. In case 2.1, deviation of
impurity sites from lattice points is completely random. In case 2.2, the deviation is small in
magnitude. The calculation proceeds in a manner similar to that in JWW.
8 This can be seen by carrying out the q expansion to higher order.
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Case 2.1. Note firstly the following important fact. In the impurity-diagrammatic technique,
results have to be averaged over all impurity configurations. With the random positional
shift of impurities, the diagrams surviving the configuration average are those such as that
of figure 1(b) with G = G′. This particular diagram, for example, contains the factor∑

Ri
exp[−i(G′ − G) · Ri], a sum over the random distribution of impurity position Ri , and is

finite only when G = G′. A similar derivation shows that, for the present calculation of the
e–ph scattering rate, the earlier expressions, (I.1)–(I.4), should be used with the modification
that9 G1 = G2 and G3 = G4.

We discuss the functional dependence of 1/τep in the following way. Firstly, note that, in
the mathematical expressions I7 and I8, we can regard the Fermi wavevector kf as a continuous
variable and I7 and I8 as functions of kf . For technical purposes, we require their domain of
kf to be the interval (k−

f , k+
f ∼ o(G/2)), with k−

f small but still large enough to satisfy the
condition k−

f l � 1. For example, if l = 100a/π , we take k−
f to be 0.1π/a. The enforcement

of the foregoing inequality is to make sure that we are always in the limit of dilute impurity
concentration, so the expressions I7 and I8 obtained in the limit can be consistently used
throughout the interval (k−

f , k+
f ).

We now evaluate 1/τep for the case where kf is small, i.e. near k−
f . In this case, our

argument against the cancellation of T 2-terms in 1/τep is made in two steps. (A) First
we make the approximation that ukf ∼ u0, where ukf and u0 are the Bloch cell-periodic
functions at kf and at the zone centre, respectively. The validity of this approximation follows
from the k · p theory of band structures in which one expands ukf in a perturbation series
with u0 being the leading-order term. Moreover, we assume reasonably that u0 has the
full symmetry of the lattice, for example, u0 is S-like in the case of a crystal with cubic
symmetry. With the approximation that ukf ∼ u0, we have C(G;p1, p2) ∼ C(G; 0, 0)
when p1 and p2 both are restricted to the Fermi surface. Moreover, it is obvious that
|C(G; 0, 0)| = | ∫ exp(−iG · r)u∗

0u0 dr| = |C(|G|; 0, 0)|, independent of the G direction,
which follows from the, for example, S-like symmetry of u0. (B) Next, we note that, in J7 and
J8, the phonon wavevector q ∼ 0, and, moreover, the electron wavevectors p, p + k, p + k2

and p + k1 + k2 which appear as arguments in various C(G) there are all restricted to the Fermi
surface, both due to the fact that contributions to the integrals I7 and I8 mainly come from the
region with q ∼ 0 and with the foregoing electron wavevectors ∼kf . So, we can take all C(G)

in J7 and J8 as C(G; kf , kf ), which can be replaced with C(G; 0, 0), according to (A). With
this, we expand J7 and obtain the cross term

2
∑
G

|C(G; 0, 0)|2(k · eqλ)(G · eqλ) = 2
∑
|G|

|C(|G|; 0, 0)|2(k · eqλ)
(
eqλ ·

∑
&G

G

)

where
∑

&G
Gdenotes the summation ofGover the direction ofGwith the magnitude |G| fixed.

Since
∑

&G
G = 0 with G distributing symmetrically for a crystal of, say, cubic symmetry,

the cross term vanishes. We are then left with only the squared terms in J7 and, so,

J7 =
∑
G

|C(|G|; 0, 0)|2[(k · eqλ)2 + (G · eqλ)2]. (8)

Similarly, we have

J8 =
∑
G,G′

|C(|G|; 0, 0)|2|C(|G′|; 0, 0)|2(k1 · eqλ) (k2 · eqλ). (9)

9 Sums of the type
∑

Ri
exp[−i(G′ − G) · Ri ] represent interference among various scattering events. The

modification with G1 = G2 and G3 = G4 means that the random positional shift of impurities bears a certain
effect on the interference.
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We note that the (k · eqλ)2-term in J7 and the whole J8 are of the same forms as those of J RS
7

and JRS
8 , respectively. When put back in the integrals I7 and I8, they both result in the order of

T 2 contributions to 1/τep that cancel with each other just as in the RS calculation. This leaves
us the (G · eqλ)2-term in J7. It is easy to see that the (G · eqλ)2-term, when integrated, makes
a T 2-order contribution to 1/τep, comparable to that from the (k · eqλ)2-term. Therefore, after
summing I7 and I8, we obtain 1/τep ∼ o(T 2).

(A) together with (B) is a rigorous argument in the case of small kf . This result is
significant and distinct from that of RS, since theirs always gives T 4-dependence regardless
of the value of kf .

Now, we discuss the functional dependence of 1/τep when kf increases towards o(G/2),
which is the case for a practical metal. Generally speaking, cancellation among terms is less
likely to occur than non-cancellation, unless there is certain symmetry-dictated reason behind
it. A good example is the earlier-discussed electric dipole transition between two states, which
is usually finite unless there is inversion symmetry and the two states are of the same parity.
In our case, if there should be a symmetry-caused cancellation, it would have shown up in
the foregoing calculation for a small kf , since such symmetry is not likely to depend on the
value of kf . The fact that the cancellation does not occur there strongly suggests lack of such
symmetry. Moreover, if we write 1/τep = f (kf )T

2 and regard f (kf ) as an analytic function
of kf , with f (kf ) � 0, it is hardly likely that the coefficient f (kf ) should vary from being
non-vanishing in the domain of small kf , proved earlier, to being identically zero for all large
values of kf . Therefore, we can conclude convincingly against the vanishing of f (kf ) for a
general value of kf . In other words, the e–ph scattering rate varies as T 2 in the general case
of a discrete lattice with non-substitutional impurities.

Case 2.2. We now turn to the case where impurity sites deviate only slightly from lattice
points. We write the impurity position Ri = Ri0 + si , where Ri0 is the corresponding lattice
vector and si = deviation. We take |si | = s0 = constant, with s0 � a, and the orientation of si
to be random. Moreover, we take kf to be small, just as in case 2.1, and continue to make use
of the properties of C(G) discussed there in this regime. These properties allow us to obtain
analytical result in the present case. Since the calculation proceeds in much the same way as
in case 2.1, we shall only sketch the major difference between this one and that in case 2.1.

Recall that, in case 2.1, because of the fact that
∑

Ri
exp[−i(G′ − G) · Ri] ∝ δG,G′ , only

diagonal terms (such as those with G1 = G2 and G3 = G4) in the diagrams contribute. But
in the present case, this is no longer true and we have to use the full expression instead. For
example, we need to insert (1/N imp)

∑
Ri

exp[i(G − G′) · Ri] in (5) and write

1

τp
= 2π

∑
k

Nimp|V0|2δ(ξp+k − ξp)
∑
G,G′

{
C(G;p + k, p)C∗(G′;p + k, p)

×
[

1

Nimp

∑
Ri

exp[i(G − G′) · Ri]

]}
.

Similarly, we need to insert, respectively, (1/Nimp)
∑

Ri
exp[i(G1 − G2) · Ri] in (I.2) and

(1/Nimp)
∑

Ri
exp[i(G1 − G2) · Ri](1/Nimp)

∑
Rj

exp[i(G3 − G4) · Rj ] in (I.4). We then

Taylor-expand these additional factors to the order of s2
0 . This leads to

I7 + I8 = −2πs2
0

3

πνNimp|V0|2
MN

∫
d3q

R(ξ, ωq,λ)

ωq,λ

∣∣∣∣
∑
G

C(|G|; 0, 0) (G · eqλ)2

∣∣∣∣
2

.
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From it, we obtain 1/τep(s0) ∼ o(s2
0/a

2) 1/τep, case 2.1 to the order of T 2, where 1/τep(s0) is
the e–ph scattering rate in the present case and 1/τep, case 2.1 is the scattering rate obtained in
the case of a random positional shift of impurities, i.e. case 2.1.

It is interesting to examine the last scattering rate result in various limits. Firstly, if we
increase the deviation parameter and extrapolate the expression to s0 ∼ o(a), the result is in
agreement with that obtained in case 2.1, where the deviation is large. Secondly, in the limit
of vanishing deviation, it gives 1/τep(s0 → 0) → 0 to the order of T 2, in agreement
with our earlier ‘substitutional’ result. If we further take the limit a → 0, we obtain
lima→0 lims0 → 0 1/τep(s0) = 0 to the order of T 2, which is the ‘continuum’ result of RS.

3. Conclusion

In summary, we have discussed the temperature dependence of 1/τep in the dirty limit for
impurity-doped metals. Discreteness of the lattice structure has been taken into account
in the calculation. We show, in the case of substitutional impurities, that the previous RS
result, 1/τep ∼ T 4, holds. However, the result is modified when we allow for destruction
of the translational symmetry by random positional shift of impurities, and an enhanced rate,
1/τep ∼ T 2, is obtained.
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